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model in one dimension
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Received 26 May 1992

Abstracl. The one-dimensional SU{N)-invariant {—J model consists of electrons with
IV spin components on a lattice with nearest-neighbour hopping and spin exchange J.
The muitiple occupancy of the latlice sites is excluded. The model is integrable at the
supersymmetric point, ¢ = J, The discrete Bethe ansaz equations are analysed and the
solutions are classified according to the string hypothesis. The thermodynamic Bethe
‘ansatz equations are derived for arbitrary band filling in terms of thermodynamic energy
potentials {or the classes of eigenstates of the Hamiltenian. These eguations are solved
in limiting cases, e.g., & == 1/2, the ground state and the high-temperature limit, If the
charge fluctuations are suppressed the Bethe gnsaiz equations map onto those of the
SU(N)-invariant Heisenberg chain.

1. Introduction

The two-dimensional Hubbard model is believed to have the main {eatures to explain
many of the fundamental properties of the cuprate high-temperature superconductors
[1]. The key ingredient is the motion of highly correlated electrons within the CuO
planes. In the limit of very large on-site Coulomb repulsion the Hubbard model can
be mapped onto the 1-J model, for which numerous properties have been studied
with approximate methods [2, 3]. It has been conjectured [1, 4] that the 1D and 2D
variants of the Hubbard and t-J models have properties in common. Exact results
in 1D are often more accessible than 2D ones and may provide a testing ground for
approaches intended for more complex problems.

The one-dimensional ¢—J model for spin 1/2 was found to be integrable at the
supersymmetric point by Sutherland [5]. This supersymmetry is related to the SU(3)-
invariant Heisenberg chain of spin 1. The Bethe ansatz equations, the classification of
states and the thermodynamic equations for this model were presented in [6]. These
results were used by Bares and Blatter [7] to calculate the spectrum of elementary
excitations explicitly, and by Kawakami and Yang [8] to obtain the exponents for
the Jong-distance asymptotic of the correlation functions. In [9] we constructed an
asymptotically exact solution in the low-electron-density limit for coupling parameters
deviating from SU(3) symmetry, ie. ¢ # J, and Lee and Schlottmann [10] extended
the Bethe ansaiz solution at the supersymmemc point to an arbitrary number of spin
components V.

In this paper we present the thermodynamic Bethe ansaiz equations for the 1D
supersymmetric ¢-J model with N spin components (N = 2§ + 1), generalizing in
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this way the results of [10] to finite temperatures. The model under consideration is
the following

£ ——ZP(C”CI_'_““’;-C‘_]_LBC”)P-}-‘Vzn LS Py

] isa’

+J Y cheipctiiping, (1.1)

iss’

where the hopping matrix element ¢ has been equated to 1. Here ¢;, annihilates
an electron at site ¢ with spin component s, where |s| £ S, n,, is the number
operator, P is a projector excluding the multiple occupancy of every site, V is a
charge interaction independent of the spin and J is a spin-exchange interaction. The
generalized spin S can be thought of as composed of spin and orbital degrees of
freedom.

Several special cases of this model are worth noting. (i) If J = 0 the spin
components do not play a relevant role, and we only have to distinguish occupied and
empty sites. The model then reduces to the spin 1/2 anisotropic X X Z Teisenberg
chain. (ii) If there is one electron per site there are no charge dynamics and the
system is just the Heisenberg chain of spin § with SU(2S -+ 1) invariance [5]. In
addition, model (1.1) is integrable for arbitrary band filling in the following cases:

(i) J = -V = %1, and (iv) J =V = +1. These situations are related to the
SU(25 4 2) invariance of the model with (25 4 1) spin and one charge degree of
freedom. The sjtuation J = —V = 1 corresponds to the supersymmetric limit of

the traditional ¢—J model (the {-J model represents the high-correlation limit of the
degenerate Hubbard model only if J « ). The thermodynamics of this case for
arbitrary spin is the subject of this paper.

The rest of the paper is organized as follows. In section 2 we restate the discrete
Bethe ansaiz equations derived previously in [10]. The structure of the ground and ex-
cited states is discussed and integral equations relating the densities of these states are
given. Furthermore sets of thermodynamic equations are obtained by minimization of
the free energy functional. In section 3 we recover as special cases the ground-state
cquations, the high-temperature limit and the Heisenberg model. Conclusions follow
in section 4.

2. The thermodynamic eguations

2.1, Bethe ansaiz equations

We first consider the Hamiltonian (1.1} for J = —V =1 for two particies in a box.
The total wavefunction can be written as a4 product of a spin wavefunction and a
coordinate wavefunction. Since the total wavefunction has to be antisymmetric, one
of the two factors has to be symmetric and the other one antisymmetric. Only pairs
of fermions forming an antisymmetric spin wavefunction are scattered [10], but not
electrons in a symmetric spin state. The corresponding scattering matrix is given by

S(k,, k,) = 1"21 * __p .

where 1 is the identity matrix and P permutes the spin indices. Here p is related
to the wavenumber k by p = 1 cot(k/2). It is easy to verify that (2.1) satisfies the
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triangular Yang-Baxter relation [11] and that 2 multiparticle scattering matrix can be
written as a product of two-particle scattering matrices, (2.1).

The exact solution of the model can now be obtained by a standard procedure
{10-12]. Imposing periodic boundary conditions, the N -pasticie problem reduces
to the simultaneous solution of N, eigenvalue equations. This eigenvalue problem
has been solved by Sutherland [12] for an arbitrary Young tableau by means of
a sequence of (N — 1) nested Bethe ansatze. Each Bethe ansaz leads to a new
eigenvalue problem with the number of spin components reduced by one and gives
rise to a set of rapidities. This procedure is applied successively until all internal
degrees of freedom are eliminated.

Hence, within the framework of the Bethe ansatz each internal degree of freedom
gives rise to a set of rapidities {,55,,”}. For an SU(XN)-invariant model there are
then &V such sets, [ = 0,..., N — 1, where the set for { = 0 corresponds to the
charge rapidities, ie., it is related to the wavenumbers {k,} of the particles &Y =
Po = Lcot(k/2). All rapidities within a given set have to be different. This larter
property leads to Fermi statistics for rapidities associated with spin waves, which have
an integer spin and are actually hard-core bosons. The rapidities are not independent
of each other but coupled by the discrete Bethe ansaiz equations [10]

©_i\™ 5(1) —i
3 — _ ‘
( (0} + _) - H {0) 5(1) i a=1,..,M, (2.2a)
<@ 2 lG.—..l o 3
Il *-—~——€U £ = —Ai'[ it Ml f“’ 40 _ g (2.26)
i g} 5(*) 3o E( E“ 1]+% it Q £1+1 +%

[=1,...,N"-1 MOENG MN:':O a=1,...,Mz

where N, is the number of sites in the chain, N, is the number of electrons and M,
is the number of rapidities in the set {{f,f)}. If ng_,, denotes the number of electrons
with spin component m and M,,, = M, — n,, then necessarily N, = M, > M, 2
M, 2 ...2 My_, 2 My = 0. This sclution corresponds to the Young tableau
(My— M, M, — My, ...,My_o— My_,, My_, — My). The energy eigenvalues
of the Hamiltonian (1.1} and the magnetization are given by

_ij2
~2N, +2 Z @i (2.3a)
N-1
= —(N- N, - Y M, (2.35)

=1

2.2, Excitations

The ground state and the excitations of the system are given by the self-consistent
solutions of equations (2.2). The rapidities have in general complex values and in the
thermodynamic limit (large N,, N, and M,), they can be classified according to:

(i) real charge rapidities, belonging to the set {E( )} which correspond to unpaired
propagating electrons;
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(ii)y complex spin and charge rapidities, which correspond to bound states of
electrons with different spin components; and
(iii) strings of complex spin rapidities, which correspond to bound spin staies.

Since only electrons with different spin components are scattered, i.e. experience
an effective attractive interaction, we may build spin complexes of up to (25 + 1)
electrons. A complex of » electrons (n € 25 + 1) is characterized by one real £r-1)
rapidity and in general complex £ rapidities, ! < n — 1, given by

ggjl=,§(n—1)+‘5p I<n-1<28 ,
p=—(n-1l-1),—(n~1-3),....,(n—=0=-1). {(2.4)

These spin and charge strings form the classes (i) and (ii), which are already present
in the ground state [10). In class (iii) there is a set of strings of complex spin rapidities
for each set of real spin rapidities {gﬁ,”}, [=1,...,25. A string of length n is given
by

(@ =aD4zn  p=—(n-1,~(n-3),...,(n=1) @)

where AYY, is a real parameter and « is the running index in each set.

The above rapidities are inserted into equations (2.2) and the resulting coupled
equations for the real {Em} and {Am } are logarithmized. This generates a set of
integer quantum numbers for each set of rapidities. In the thermodynamic limit we
define the usual distribution functions for the rapidities: o!)(¢) for the reai £ and

n(A) for the Agl, and similarly for the ‘hole’ distribution functions p&”(ﬁ) and
a8)(A). ‘Particle’ and ‘hole’ densities are not independent in view of the Fermi

statustlcs of the rapiditics, but coupled by sets of linear integral equations. Fourier
transforming the equaticns, we have

28 o Tw
W)+ 50w + 360w exp( -+ a- 2,,) sinhl5 (o, + 1)

Z sinh(%) 26
+ nzlc,(rm (w) exp ( n%) = exp ( ({+ Ui?)
#0() = 1 (w) exp (-ml2])
Z [ 0w) + 8+ (w) — 2 cosh (5 ) 5]
= 2.7

sinh(% min{m, n})
sinh(%)

X exp (—-% max(m, n))

The last set of equations holds for m = 1,...,00 with &%y, ! o) and o\
being identically zero, and p, , = min(l,q) — §, ,. Here the caret denotes a Fourier
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transform. Equations (2.7} are equivalent to the following set
wy W (1
2cosh(§-) () n(w) — O'En)-:-m(‘-‘-’) - O'm wmw) = o‘“"‘l)(w)

+ &4 w) - 2cosh(§) &0 (w) mz2
(2.8)
2 cosh{5) 6(w) ~ 5§ (w) - 50D (w) = 6{(*V(w)

S(I=1) 5 WY (1)
+ &1 (w) 2cosh(2) &7 (w).

These equations differ only by their driving terms (independent terms) from the
corresponding ones for the N-component one-dimensional fermion gas with attractive
é-function interaction and the degenerate Anderson impurity in the U — oo limit
[13].

2.3. Minimization of the free energy

The distribution functions (") and &% are actually determined by minimizing the
free energy

F=E-TS 2.9)
where

25 1
3(m+1)
= - {(m) 2 .
E 2N°+2Nan§/d5 AR Tt 12

T is the temperature and S is the sum of the distribution entropies of the rapidities,
which, e.g., for p(}(£) is given by (Fermi distribution since all the rapidities within
. one set must be dlfferent)

The minimization of the free energy functional must be carried out considering the
relations (2.6) and (2.7) and under the constraint of a constant number of particles
for each spin component, n;. The numbers n, are given by

Z fdg PO(A) + Z/dA o(35-D(A) - ol25+1- ”(A)) (2.12)

(2.10)

g=25-1
and the total number of electrons becomes
25 28
No=Yom=3+1) [ ag oo, (213)
I= =0

The Lagrange multipliers cotresponding to the conservation of n; are denoted by
A; and represent the chemical potential (Fermi energy), the magnetic field, crys-
talline field splittings, etc. It is useful to define an energy potential for each class of
excitations
K060 = exple/T) oD/ = exp(e®/T) = nD.  (214)
From equations (2.6) and (2.7) we have that only one-half of the density functions
are actually independent. There are many equivalent ways to minimize the free
energy, depending on which of the functions are chosen to be independent. Below
we present three different, though equivalent, sets of thermodynamic Bethe ansatz
equations for the energy potentials ¢,(£) and goU)(A). )
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2.4. Thermodynamic Bethe ansaiz equations
24.1. 1f all the p{(¢) and the o}’(A) are independent we obtain

im+1)
24 g(m+1)?

25
~2m+1)— Y A,

g=25—m

28 _
+ TZde' ln(l + exp (—-;—,7-))
q=0

X f %L—:--exp(i(ﬁ — & w — ]_Z_l(m +a- pm"?))

‘Em(E) = 25

sinh[%(pym,e +1)]
sinh(%)

3 4 m - 1 n/2
- Tn;fcm ln(1+ (n{™ D) 1) e YO (2.15)

Tin(1+57) = 5 (dasiacm = Arso) +7 52 [o8 [ 52 {2com(3)

nf=1

cta(s -+ (1) (1 ) (4 )]

e exp(i(A - Aw - ‘—;ﬂ max(n,n’)) 51“”:}2:&5;,71 )]
nf2

+ de.s 18{1 + exp(=€m_1/T)) ;1; (2.16)

E~Ayp+nija

2.4.2. On the other hand, if all the p(Y(¢) and the af:g(A) are independent then
instead of equations (2.16) we obtain

e (A) = 8,4 T f dg Go(A ~ &) In(1 + exp(~e,_1/T))
+ deA’ Go(A — A’){ln[(z + 2 (1 + nﬁg‘j’l)] (2.17)
~In ]+ @ (L + )}

or equivalently
2 dw w

In(1 + (n{™)"1) = Z]dA' In(1 + n{) f Goelt=A12 2 cosh (2] &, ()
7=1 -

25
> fd"\'{ln [(1+ 78 (1 + nfi)l)] (2.18)
q9=1

+ 6, ,In{1+ exp(—eq_llT))} f %—L‘rire"("*"\')“‘ ém‘q(w).
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24.3. If now p(D(¢) for 1 < 25 — 1, p0¥)(¢) and the o{)(A) are the independent
functions, then (2.15) can be rewritten as

) . "
s(§) = ~2- i§2:,4 +/dwe—i$w-—%lwl sinh(%) 2.19)
Nz sinh (£ N)

2s 1 . .
dw _ie_gne sinh(%(g + 1))
T E d¢’'l S emi(§=ENw 2
* ] : n(Hexp( D/zwe Sinh(2N)

' €25 dw ‘“'-(E E)""'_ [w] Slnh(wS)
+de£ in 1+exp( T))f2w 3 _——smh(“’N)

In(1 + exp(e, /T)) = = f dwe-idv S‘“ZEE}E%:,’ ;)m)) 2.20)
’ €15 —lff f)w Slﬂh( (m+1))
+/d£ ln(l +exp( T ))/ smh( N)
25-1
+ Zfd{'ln(l-}-ex ( ))
dw i w Wy -
x [ 5-e {E=£)w 9 cosh (5) Grat1,9+1()
25-1 .
— Z /dA’ !n 1 -f" 7’]1?+1) / —I(E_A )me+1,g+1(w).
Equation (2.20) holds for m < 285.
We have denoted
_ fdw e, wyy~!
Gy(€) = / St (2cosh(2)) n (2.21)
" and . |
G,,q(w) _ sinh(% min{g, )} sinh[2(N - max(q,l))] 22)

sinh{% N)sinh(¥%)

Here A = % , 0 A, is the chemical potential. '

In order to be completely defined, equations (2.17) and (2.18) require asymptotic
conditions for the 4’ as n tends to infinity. These boundary conditions are deter-
mined by the splitting scheme of the (2.5 + 1)-fold mulitiplet, i.e. by the Zeeman and
the crystal field energies through the Lagrange multipliers 4; for the conservation of
the number of particles of a given colour. Note that 4; — A is independent of the
chemical potential. From (2.16) we obtain

lim “P() = Apspay — Azg1 20 (2.23)

n—od 1

in particular for pure Zeeman splitting it follows from the definition of the magneti-
zation that A,e. ), — A, = Hfori=1,...,25.
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The free energy of the system is given by

F 1 m4+1) -
7= TZfd.Eln(l-’rexp( W) it @

or equivalently by

F sinh(%) 1 &
— = —(S+1wf _2NY) 5 _
A fdwe e Ny~ N IZ%A; deE In(1 + exple,g/T))

dw \ sinh(%) N
<[5 e (“"f“’ - 5‘“') snh(2N)

25-1

—Tzfdﬁln(wexp(- m/TY)

m=0

(2:25)

« [ 8w _,Ewsmh[ 2(25 ~ m)]

27 ° sinh(% N)

2.5, Relation between potentials and densily functions

In order to derive the density functions for particles and holes from the thermody-
namic potentials we modify the driving terms in equations (2.15) by replacing

Jm41) o Ym+1
£+ {(m +1)? £+ im+1)?2"

Diffcrentiating (2.15) and (2.16) with respect to z, we obtain by comparison with
equations (2.6) and (2.7) that
1 e, ~1
(M) = —m /T
pI(E) = 2 - (1 +e )

a
(M) = 52 (1 4 emem/T)

-1

2.26)

(m) " Nt
m —_ s I {m
Tn (A) T 9x 8x (1 + 7l )

(m) ~17-1
(m)(A) 1 ag?_n [1_{_(”&,,1)) 1] -

3. Special cases

In this section we discuss several limiting situations of the thermodynamic Bethe
ansafz equations,
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3.1 Spin § = 12

For § = 1/2 we recover the results presented in [6] if we identify €, with ¥ and ¢,

with €. Since there is only-one spin degree of freedom the superscript m in @™ can
be dropped. Note that for § = 1/2 the free energy can be brought into the simple
form

F/N, = W¥(0) -2 - 2A.

3.2, Zero-temperature limit

Assuming that A,g.,_; 2 Ays_; for I = 1,...,25 it follows from the set of
equations (2.16) that ™ > 0 for all n and m, and all values of A. Consequently
as T — 0, a%m)(A) = 0, so the strings corresponding to bound spin states are not
occupied. The functions ¢, (£}, on the other hand, may change sign as a function of
£. We denote with ¢} (£) and ¢, (£) the positive and negative parts of ¢,,(£), so
that €,,(£) = b (£} + ¢, (£). Equations (2.15) then take the form

_ m+1) )
+ € = p - fe
O+ (6 = 2l T <2 ) - ; A, Z/df S (&)
«f E‘iexp(ica—E')w—'2—'(m+q—pm,q)) @
sinh[% (qu+1)]
sinh(%)

The ¢€,,(£) are symmetric and monotonically decreasing functions of |¢| with zeroes
at =B, ie. €,(+B,,) = 0. The function €},(£) is then non-vanishing in the in-
terval [- B, B, ] and ideatically zero eIsewhere while em(f } is the complemen:ary
function.

The ground-state energy is obtained from equations (2. 24) and (2. 25)

1
Nﬁf f 2@ 2t P D o [auersrm Sub{E)

m=0 7w &2+ 4( m+1)* smh( N)
h
ZA*' /dfczs(f)/_ EXP( ~igw - _[ l) Sls:lll((zjgr)
ag-1 w .. sinh(2(25 -
+ f ag e (6) [ Sheriee sgﬁ%fv)m))' 7

Equations (3.1) are coupled integral equations of the Fredholm type and have,
in general, to be solved numerically. The most appropriate procedure is to fix the
integration limits {B,,,} and determine the {A4,,} so that ¢,,(+B, ) = 0. Below we
discuss some limiting cases in more detail.
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3.3. Zero-temperature zero-field limit

In the absence of external fields e, = 0 for m < 25 and only string states corre-
sponding to charge-spin bound states of order ¥ =25 4+ 1 are occupied. Equation
(3.1) then reduces to one integral equation for e, ¢

o -Q y
635(5) + l-/(;2 +/ } d&’ e55(€) /.___ exp(i(€ - & )w) eXP( Jw| V)

—exp(~|w])
N/2
&+ N4
where Q = B,; plays the role of the Fermi momentum. If Q@ — oo the band is
cmpty and we readily obtain

=2 - (24 AN (3.3)

N/2
FENTE

The condition for an empty band is of course A £

When A is only slightly above —2 the systcm has a low electron dens:ty Con-
sequently ¢ is Jarge but finite. Under these circumstances the integral equation can
be solved iteratively [6,10] by reducing it to a sequence of Wiener-Hopf equations.
After a lengthy calculation we obtain

efs(6)=2 —(2+ A)N. (3.4)

Q=(2+ Ay (14 (S/4r)(2+ A) In(2 + A) + )
and, to lcading order, the number of electrons and the encrgy are given by

No/N, = (N/=)(2+ AY/? (3.5)
E/N, = ~(2N/3m)(2 + A)*/? , (3.6)

as expected from a (one-dimensional) free electron density of states.
The situation of a full or almost full band can also be trcated analytically. No
holes corresponds to Q = 0, so that ¢, = 0. It is then straightforward to obtain

C:;s(f".)

_ 2 1 1 . . &
as6)=gre[v(F+x+ig)-v(3+if)]-cra @7)
and similarly

25)(¢) = R ! Y (il
P (6)_WNRE[¢(2+N+1N) 1f’(zJ”N -G8
Here 1 is the digamma function. It is easy to verify that
N oo
e = (25)( ey =
Ne= N [ aes e =1
and that

E/N,= (2/N)[¥ (1 +1/N) - p(1)] - (2 + A). (3.9)
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If @ is small but finite the system has a low density of holes. It is convenient in
this case to rewrite the integral equation as

e [ 500 [ - A
=%Re[¢(%+%+i%)—w(%+i%)]-(2+A) (3.10)

which can be solved iteratively for small @ [6]. We obtain for the number of electrons
and the energy:

Ny _ o i_Qﬁ [¢ (% + %) v G)] (3.11)
% [111(1 +-§,—) —w(l)] —(2+ A)

G R)-@)-erm) (-3

3.4. Zero-temperature and small Zeeman splitting

—

e F

(3.12)

We now consider the cffect of a small magnetic field on the system with arbitrary
band filling. In a small magnetic field ali B, ({ = 0,...,25 — 1) are finite but
large. The difference in population of Zeeman levels is proportional to H, while the
feedback of the field on ¢,g is proportional to HZ? and can be neglected. In other
words, we use the zero-ficld result for ¢,5. After some algebra the integral equations
can be cast into the following form ‘

25-~1

o0 -B;
4 ! - i
O+ 2 [/Bq+/_m ]de & (€9
[ Len(ie- et D) bpgu) 61

/ |
= [ 4 () (=€) 42 Fog_ (&)= (m+ )25~ m)(H/2)

where
_ ™ dw ., sinh[£(m + 1)]
F.(£) ~—f_m ox° sinzh(%N) 3.14
1 sin[w(m + 1)/N] o

= N cosh[27E/N] + cos[x(m + 1}/N]

Note that e, is now part of the driving term. For sufficiently small magnetic fields
B, > Q, so the right-hand side of (3.13) can be approximated by

27 sin[=(m + 1)/N] 1 /9, e’ ,
‘N cosh[2rE/N] |:1 + Q}"/_Q d§ exp(T) €3s(€ )]

—(m +1)(25 - m)(H/2). (3.15)
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The corresponding set of integral equations obeyed by the density functions is ob-
tained by dropping the ficld-dependent driving term in (3.13) and (3.15), and by
making the following replacements

{m) (25)

— 27 py €, — 27 pl™} — 2mwp,

m.

Using the definition of the magnetization it is possible to show that the zero-field
and low-field magnetic susceptibilitics of the system are given by

x(0) = L N(N? ~1) 14+ fQ d¢! 3xp(27r£’/N)p25)(5')
472 6 14 FI?Q de! exp(zﬂ-&r/N) Ezs(f’)

o= [1 + () + (o Hl)zln(mll )+ ] - Gy

Hence, x(0) depends on the band filling and the susceptibility grows with decreasing
electron concentration. (Note that J differs by a factor of 2 with respect to the
definition in [14] for the Heisenberg model) In a small but finitc field we obtain
logarithmic singularities as a consequence of the interference between the two Fermi
points (scattering across the Fermi surface) [6, 14, 15].

(3.16a)

3.5. High-temperature limit

If the temperature is much larger than the bandwidth, ie. T » 2, we can neglect
the independent terms in the integral equations. In the absence of driving terms the
energy potentials ¢, and 7" do not depend on £ and A. The integral equations
can then be reduced to a set of algebraic equations. We have succeeded in obtaining
a general solution of this algebraic set of equations only for § = 1/2. This solution
for § = 1/2 can be found in [6]. For general S5 we cncountered similar difficuities
as previously for the degencrate Anderson impurity (see [13]).

3.6. Mapping on the SU(N )-invariant Heisenberg chain

The proccdure outlined below is analogous to the one presented in [13] to obtain
the Coqblin-Schrieffer limit from the solution of the Anderson model. We define the
following set of functions
! !

o N A) =exp(~¢,/T)  O{IDA)=a*D  1=9,...,25-1 (317)
where n = 1,.... Since spin and charge excitations decouple in 1D models, we can
freeze the charge excitations and incorporate the charge variables into the driving
term. In this way we obtain the following set of integral equations

1n[1+( ] D, (A) - fdA' n[(1+ 0%, ) (1+0,)]

dh.) . ' »
de iAo ; (2)
xf%e Gm!q(w)+§_l:fdA n(1+0() (3.18)

dew ei(A-A")w >
X/Z'n' 2cosh(2) G g(w)-
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Here D, (A) are the driving terms, which are given by

D(A) = 7 Frs (M) + [ AN 1a(1 4 exp(eys/T)) Frn_y(A) (3.19)
where m=1,...,25.

For low-energy spin excitations the two driving terms have the same A-
dependence. On the other hand, for a full band the driving term involving e,¢
vanishes and equations (3.18) and (3.19) reduce to the thermodynamic Bethe ansaiz
equations for the SU(/NV) Heisenberg chain. In this limit the charges are localized
and have no dynamics.

4, Concluding remarks

We considered the N-fold-degenerate t—J model, which is completely integrable at
the supersymmettic point ¢ = J = —V [10]. The components may be thought of
as arising from combined spin and orbital degrees of freedom. Note that the model
can be mapped onto a (/N + 1)-component quantum laitice gas as introduced by
Sutherland [5]. The additional degree of freedom corresponds to the charges. Using
the string hypothesis we classified all the eigenstates of the Hamiltonian and derived
the thermodynamic Bethe ansaiz equations, generalizing in this way our results for
the traditional (§ = 1/2) t—J model. The procedure followed is in close analogy to
the one used to derive the thermodynamics of the degenerate Anderson model for a
magnetic impurity (in the limit U — oo) [13].

‘We have analysed the thermodynamic Bethe ansatz equations in several limits. For
a full band the charges do not have dynamics and the equations reduce to those of
the SU(N)-invariant Heisenberg chain. The properties of the model are particularly
interesting at low T. The zero-field susceptibility is a decreasing function of the
electron density. x is expected to diverge as N,/N, — 0 (1D van Hove singularity).
.In a finite but small magnetic field the susceptibility shows logarithmic singularitics,
which are characteristic of one-dimensional systems with SU(/N) symmetry and arise
due to the interference of the two Fermi-surface points [14,15]. The specific heat at
low T is proportional to 7. As a consequence of the logarithmic field singularitites
the ~-coefficient is singular, in the sense that the [imits T — 0 and A — ¢ cannot

be interchanged [16]. _

' Although we classified the complex spin and charge rapidities (2.4) as bound
states of electrons with different spin components, they are not bound states in the
real sense, since no actual binding energy is involved (the binding energy is zero).
The excitation spectrum is then similar to the one expected for a Fermi liquid or
a marginal Fermi liquid. A ground-state crossover is believed to take place at the
supersymmetric point of the ¢t—J model (at least for low density of electrons) [9].
t = J = -V is the boundary between normal Fermi liquid behaviour and a state
with Cooper-pair-type bound states with finite pairing energy.
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