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Thermodynamics of the degenerate supersymmetric t-J 
model in one dimension 
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Depanment oi Physics and Center for Materials Research and Technology, Florida State 
Universily, Bllahassee, FL 323% USA 

Received 26 May 1992 

A b s h c L  The one-dimensional SU(N)-invariant t-J model consists of electrons with 
N spin components on a lattice with nearest-neighbour hopping and spin =change J .  
The multiple occupancy of the lattice sites is excluded. The model is integrable at the 
supemymmetric point, t = J .  The discrete Bethe m a Q  equations are analysed and the 
Solutions are classified according to the sling hypothesis. The thermodynamic Bethe 
m a Q  equations are derived for arbitray band filling in terms of thermodynamic energy 
potentials for the classes of eigenstates of the Hamiltonian. These equations are solved 
in limiting cases, e.g., S = 112, the ground slate and the high-temperature limit. If the 
charge fluctuations are suppressed the Bethe m a m  equations map onto those of the 
SU(N)-invariant Heisenberg chain. 

1. Introduction 

The two-dimemio-! Uubhard model is believed to have the main features to explain 
many of the fundamental properties of the cuprate high-temperature superconductors 
111. The key ingredient is the motion of highly correlated electrons within the CuO 
planes. In the limit of very large on-site Coulomb repulsion the Hubbard model can 
be mapped onto the 1-J model, for which numerous properties have been studied 
with approximate methods [2, 31. It has been conjectured 11, 41 that the ID and 2D 
variants of the Hubbard and t-J models have properties in common. Exact results 
in 1D are often more accessible than 2~ ones and may provide a testing ground for 
approaches intended for more complex problems. 

The one-dimensional t - J  model for spin ln was found to be integrable a t  the 
supersymmetric point by Sutherland 151. This supersymmetry is related to the SU(3)- 
invariant Heisenberg chain of spin 1. The Bethe ansav equations, the classification of 
states and the thermodynamic equations for this model were presented in [6J. These 
results were used by Bares and Blatter [7] to calculate the spectrum of elementary 
excitations explicitly, and by Kawakami and Yang (81 to obtain the exponents for 
the long-distance asymptotic of the correlation functions. In [9]  we constructed an 
asymptotically exact solution in the low-electron-density limit for coupling parameters 
deviating from SU(3) symmetry, i.e. 1 f: J ,  and Lee and Schlottmann [lo] extended 
the Bethe ansatz solution at the supersymmetric point to an arbitrary number of spin 
components N .  

In this paper we present the thermodynamic Bethe ansa& equations for the ID 
supersymmetric 1-J model with N spin components (N = 2s + l), generalizing in 
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this way the results of [lo] to finite temperatures. The model under consideration is 
the following 

rf = -CP(C~~C;+,.+C:+~.C~.) ~ + v x ~ n ; , n ~ ~ ~ , ,  
is iaa’  

+ J x C ~ C i s ’ c ; C + , , , C i t l s  (1.1) 
is..‘ 

where the hopping matrix element t has been equated to 1. Here cis annihilates 
an electron at site i with spin component s, where Is1 6 S, nis is the number 
operator, P is a projector excluding the muftipfe occupancy of every site, V is a 
charge interaction independent of the spin and J is a spin-exchange interaction. The 
generalized spin S can be thought of as composed of spin and orbital degrees of 
freedom. 

Several special cases of this model are worth noting. (i) If J = 0 the spin 
components do not play a relevant role, and we only have to distinguish occupied and 
empty sites. The model then reduces to the spin 1/2 anisotropic X X Z  Heisenberg 
chain. (i) If there is one electron per site there are no charge dynamics and the 
system is just the Heisenberg chain of spin S with SU(2S + 1) invariance [SI. In 
addition, model (1.1) is integrable for arbitrary band filling in the following cases: 
(iii) J = -V = fl, and (iv) J = V = il. These situations are related to the 
SU(2.S + 2) invariance of the model with (2s + 1) spin and one charge degree of 
freedom. The situation J = -V = 1 corresponds to the supersymmetric limit of 
the traditional 1-J model (the t-J model represents the high-correlation limit of the 
degenerate Hubbard model only if J < 1) .  The thermodynamics of this case for 
arbitrary spin is the subject of this paper. 

The rest of the paper is organized as follows. In section 2 we restate the discrete 
Bethe umub equations derived previously in [IO]. The structure of the ground and cx- 
cited states is discussed and integral equations relating the densities of these states are 
given. Furthermore sets of thermodynamic equations are obtained by minimization of 
the free energy functional. In section 3 we recover as special cases the ground-state 
equations, the high-temperature limit and the Heisenberg model. Conclusions follow 
in section 4. 

2. The thermodynamic equations 

2.1. Bethe umub equations 

We first consider the Hamiltonian (1.1) for J = -V = 1 for two particles in a box. 
The total wavefunction can be written as a product of a spin wavefunction and a 
coordinate wavefunction. Since the total wavefunction has to be antisymmetric, one 
of the two factors has to be symmetric and the other one antisymmetric. Only pairs 
of fermions forming an antisymmetric spin wavefunction are scattered [lo], but not 
electrons in a symmetric spin state. The corresponding scattering matrix is given by 

i 
. P  Pl - P 2  

S ( k , , k , )  = p 1 - p 2 + i  I +  P , - - P 2 + 1  

where I is the identity matrix and P permutes the spin indices. Here p is related 
to the wavenumber IC by p = cot( IC/2). It is easy to verify that (2.1) satisfies the 
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triangular Yang-Baxter relation (111 and that a multiparticle scattering matrix can be 
written as a product of two-particle scattering matrices, (2.1). 

The exact solution of the model can now be obtained by a standard procedure 
[10-12]. Imposing periodic boundary conditions, the N,-particIe problem reduces 
to the simultaneous solution of Ne eigenvalue equations. This eigenvalue problem 
has been solved by Sutherland [12] for an arbitrary Young tableau by means of 
a sequence of ( N  - 1) nested Bethe ansalze. Each Bethe arme  leads to a new 
eigenvalue problem with the number of spin components reduced by one and gives  
rise to a set of rapidities. This procedure is applied successively until all internal 
degrees of freedom are eliminated. 

Hence, within the framework of the Bethe ansa0 each internal degree of freedom 
gives rise to a set of rapidities {&). For an SU(N)-invariant model there are 
then N such sets, 1 = O,..,, N - 1, where the set for 1 = 0 corresponds to the 
charge rapidities, Le., it is related to the wavenumbers { k f f ?  of the particles .&? = 
p ,  = icot(k/2) .  All rapidities within a given set have to be different. This latter 
property leads to Fermi statistics for rapidities associated with spin waves, which have 
an integer spin and are actually hard-core bosons. The rapidities are not independent 
of each other but coupled by the discrete Bethe ansalz equations [lo] 

(2.2u) 

1 = 1, ..., N - 1 MO E Ne MN z 0 a = 1,. .. , M f  

where N ,  is the number of sites in the chain, N e  is the number of electrons and M ,  
is the number of rapidities in the set {(:I). If ns-m denotes the number of electrons 
with spin component m and Mitl = Mi - ni, then necessarily Ne E MO > Mi > 
M,  2 . . . 2 MN-l > M N  E 0. This solution corresponds to the Young tableau 
(MO - M ,  , MI - M,, ..., M,,-2 - MN-l, MN-l - M N ) .  The energy eigenvalues 
of the Hamiltonian (1.1) and the magnetization are given by 

N-1 1 
2 

S, = - ( N  - l)Ne - M,. 
1=1 

( 2 . 3 ~ )  

(2.36) 

22. Excitarions 

The ground state and the excitations of the system are given by the self-consistent 
solutions of equations (2.2). The rapidities have in general complex values and in the 
thermodynamic limit (large Na, Ne and M,) ,  they-can be classified according to: 

(i) real charge rapidities, belonging to the set { E ! $ ) ,  which correspond to unpaired 
propagating electrons; 
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(ii) complex spin and charge rapidities, which correspond to bound state8 of 

(iii) strings of complex spin rapidities, which correspond to bound spin states. 

Since only electrons with different spin components are scattered, i.e. experience 
an effective attractive interaction, we may build spin complexes of up to (2s + 1) 
electrons. A complex of n electrons (n < 2 S +  1) is characterized by one real $n- l )  

rapidity and in gencral complex [ ( I )  rapidities, 1 < n - 1, given by 

electrons with different spin compcpents; and 

i ( 1 )  - p - 1 )  + ?p I < n - 1 < 2s E ,  - 
p = -(n - 1  - l ) , - (n  - I - 3 ) , .  . . ,(n- 1 - 1). (2.4) 

These spin and charge strings form the classes (i) and (U), which are already present 
in the ground state [lo]. In class (iii) there is a set of strings of complex spin rapidities 
for each set of real spin rapidities ($'}, I = 1, ..., 25. A string of length n is given 
by 

(')IL=A(') +I, @ = - ( n - l ) , - ( n - 3 )  ,..., ( n - 1 )  (2.5) 
2 Ea, an 

where Agk is a real parameter and o( is the running index in each set. 
The above rapidities are inserted into equations (2.2) and the resulting coupled 

equations for the real { E ' , ' ) }  and {A','!,} are logarithmized. This generates a set of 
integer quantum numbers for each set of rapidities. In the thermodynamic limit we 
define the usual distribution functions for the rapidities: p ( l ) ( c )  for the real c','' and 
&)(A)  for the A','?,, and similarly for the 'hole' distribution functions p(h)(()  and 
u ~ ~ ( A ) .  'Particle' and 'hole' densities are not independent in view of the Fermi 
statistics of the rapidities, but coupled by sets of linear integral equations. Fourier 
transforming the equations, we have 

The last set of equations holds for m = 1, ...,ca with &), V ~ L ,  &?, and us) 
being identically zero, and p l , q  =~min( l ,  q )  - 61,q. Here the caret denotes a Fourier 
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transform. Equations (2.7) are equivalent to the following set 

2 c o ~ h ( ~ )  BE\(w) -+mtlh(w) -e( ')  m-lh m (U) 
(0 W 

( w )  = +('+') 

W + +:-')(U) - 2 c 0 s h ( ~ )  @(w)  m 2 2 
(2.8) 

I + l ) ( W )  
W 2 c 0 s h ( ~ )  +$,)(w) - +$,)(w) - #- ' ) (w )  = 5; 

+ &Y-')(u) - 2cosh (;) +y'(w).  

These equations differ only by their driving terms (independent terms) from the 
corresponding ones for the N-component one-dimensional fermion gas with attractive 
6-function interaction and the degenerate Anderson impurity in the U -+ oi) limit 

2.3. Minimization of the free energy 

The distribution functions p(')  and U:) are actually determined by minimizing the 
free energy 

~ 3 1 .  

F = E - T S  (2.9) 
where 

T is the temperature and S is the sum of the distribution entropies of the rapidities, 
which, e.g., for p( ' ) (< )  is given by (Fermi distribution since all the rapidities within 
one set must be different) 

The minimization of the free energy functional must be carried out considering the 
relations (2.6) and (27) and under the constraint of a constant number of particles 
for each spin component, n f .  The numbers nf  are given by 

and the total number of electrons becomes 

The Lagrange multipliers corresponding to the conservation of nf are denoted by 
A' and represent the chemical potential (Fermi energy), the magnetic field, crys- 
talline field splittings, etc. It is useful to define an energy potential for each class of 
excitations 

p c ) / p ( ' )  = e x p ( e f / T )  anh/un ( 0  ( I )  - - exp(pt)/T) = vi'). (2.14) 

From equations (26) and (2.7) we have that only one-half of the density functions 
are actually independent There are many equivalent ways to minimize the free 
energy, depending on which of the functions are chosen to be independent. Below 
we present three different, though equivalent, sets of thermodynamic Bethe amatz 
equations for the energy potentials e l ( < )  and q f ) ( A ) .  



7570 P Scklortniann 

24 .  Themtodynamic Bethe ansalz equalions 

24.1.  If all the pl f l (E )  and the oC)(A) are independent we obtain 

2.4.2. On the other hand, i f  all the p ( ‘ l ( € )  and the oCL(A) are independent then 
instead of equations (2.16) we obtain 

PP(,~)(A) = 6n,1 T d<  Go(A - E )  In(1 +exp(-c,-l/T)) 

(217) 

J 
J + T dA’Go(A - A’){ln[(l + v ~ ~ ~ ) ( 1  + v?!)] 

- l n i ( l +  ( v ~ m + l ) ) - ~ ) ( ~  + ( v ~ m - l ) ) - ~ ) ] }  

or equivalently 
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2.4.3. If now ,o(')([) for 1 < 2s - 1, ,or)([) and the c$~(A) are the independent 
functions, then (215) can be rewritten as 

Equation (2.20) holds for m < 2.5. 
We have 'denoted 

(2.21) 

and 

s i n h ( 2  min(q, l ) )  s inh[$(N - max(q,1))] 
(2.22) 

G,,,(w) = s inh (TN)  sinh($) 

Here A = $ 
In order to be completely defined, equations (217) and (2.18) require asymptotic 

conditions for the q$) as n tends to infinity. These boundary conditions are deter- 
mined by the splitting scheme of the (2s f I)-fold multiplet, i.e. by the Zeeman and 
the crystal field energies through the Lagrange multipliers A, for the conservation of 
the number of particles of a given colour. Note that A, - A is independent of the 
chemical potential. From (2.16) we obtain 

1 

A, is the chemical potential. 

(2.23) Iim -9;) = A 2St1-I - 4 s - 1  2 0 n-m n 

in particular for pure Zceman splitting it follows from the definition of the magneti- 
zation that A,stl-I - = H for 1 = 1, ..., 25.  
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The free energy of the system is given by 

2s 1 $ ( m + l )  - 
, (224) 

- = - T ~ J d e l n ( l  F texp(-c , /T))-  
Na m=O 77 "' ' 

or equivalently by 

2.5. Relation between polentials and densiry functions 

In order to derive the density functions for particles and holes from the thermody- 
namic potentials we modify the driving terms in equations (2.15) by replacing 

Differentiating (215) and (2.16) with respect to x, we obtain by comparison with 
equations (2.6) and (27) that 

3. Special cases 

In this section we discuss several limiting situations of the thermodynamic Bethe 
ansatz equations. 
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3.1. spin s = 1/2 

For S = 112 we recover the results presented in [6] if we identify e Z S  with rY and eo 

with E. Since there is only-one spin degree of freedom the superscript m in pim) can 
be dropped. Note that for S = 1 12 the free energy can be brought into the simple 
form 

F I N ,  = @(O) - 2 - 2A. 

3.2. Zero-temperalure liniif 

Assuming that A,,+,-, A,s-l for 1 = 1 , .  . . ,2S it follows from the set of 
equations (216) that &" > 0 for all n and m, and all values of A. Consequently 
as T -* 0, mkm)(A) z 0, so the strings corresponding to bound spin states are not 
occupied. The functions em((),  on the other hand, may change sign as a function of 
(. We denote with e & ( [ )  and E ; ( ( )  the positive and negative parts of em((), so 
that em(<) = e & ( ( )  + E ; ( ( ) .  Equations (2.15) then take the form 

The em(() are symmetric and monotonically decreasing functions of I[] with zeroes 
at iB,, i.e. em(&Bm) = 0. The function E L ( ( )  is then non-vanishing in the in- 
terval [-Bm, B,] and identically zero elsewhere, while €;(() is the complementary 
function. 

The ground-state energy is obtained from equations (2.24) and (2.25) 

Equations (3.1) are  coupled integral equations of the Fredholm type and have, 
in general, to be solved numerically. The most appropriate procedure is t6' fix the 
integration limits {Bm} and determine the {A,,) so that em(+Bm) = 0. Below we 
discuss some limiting cases in more detail. 
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3.3. Zero-remperalure zero-field limit 

In the absence of external fields c; E 0 for m C 2s and only string States corre 
sponding to chargespin bound states of order N = 2 s  + 1 are occupied. Equation 
(3.1) then reduces to one integral equation for c2, 

= 2  - ( 2 + A ) N  (3.3) t2  + N 2 / 4  

where Q = B,, plays the role of the Fermi momentum. If Q - CO the band is 
empty and we readily obtain 

The condition for an empty band is of course A < -2. 
When A is only slightly above -2 the system has a low electron density. Con- 

sequently Q is large but finite. Under these circumstances the integral equation can 
be solved iteratively [6,10] by reducing it to a sequence of Wiener-Hopf equations. 
After a lengthy calculation we obtain 

Q = ( 2  + A)-"' (1 + ( S / 4 x ) ( 2  + A) ' l21n(2  + A )  + ".) 
and, to leading order, the number of electrons and the energy are given by 

N,/N,  = ( N / T ) ( ~  + A)'/' 
E I N ,  = - ( 2 N / 3 ~ ) ( 2  + 

as expected from a (one-dimensional) free electron density of states. 

holes corresponds to Q = 0, so that 
The situation of a full or almost full band can also be treated analytically. No 

z 0. It is then straightfonvard to obtain 
C Z S ( 0  

(3.7) 

and similarly 

Here + is the digamma function. I t  is easy to verify that 
m - Ne - - N Lw d< P ( ~ ~ ) ( . $ )  = 1 

N ,  
and that 

E I N ,  = (2 /A ' ) [+(1+ 1 / N )  -+( I ) ]  - ( 2  + A ) .  (3.9) 
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If Q is small but finite the system has a low density of holes. It is convenient in 
this case to rewrite the integral equation as 

(3.10) 

which can be solved iteratively for small Q [6]. We obtain for the number of electrons 
and the energy: 

(3.11) 

3.4. Zero-temperalure and small Zeeman splitring 

We now consider the effect of a small magnetic field on the system with arbitrary 
band filling. In  a small magnetic field all B, (I = 0 , .  . . ,2S - 1) are finite but 
large. The difference in population of 2ccman.levels is proportional to H, while the 
feedback of the field, on is proportional to H2 and can be neglected. In other 
words, we use the zero-field result for fZS. After some algebra the integral equations 
can be cast into the following form 

where 

m dw sinh['$(m + l)] 
s inh(YN) 

- _  1 sin[n(m + l ) / N ]  - 
N c o s h [ 2 ~ E / N ]  + c o s [ ~ ( m  + l ) / N ] '  

(3.14) 

Note that eZ5 is now part of the driving term. For sufficiently small magnetic fields 
B, B Q, so the right-hand side of (3.13) can be approximated by 

- (m + 1)(2S - m ) ( H / 2 ) .  (3.15) 
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The corresponding set of integral equations obeyed by the density functions is ob- 
tained by dropping the field-dependent driving term in (3.13) and (3.15), and by 
making the following replacements 

€; ..+ 2 7 i p p  e ,  - 27rp(m) €& - 2 T p h  (2 .9  . 
Using the definition of the magnetization it is possible to show that the zero-field 

and low-field magnetic susceptibilitics of the system are given by 

(3.16a) 
I N ( W  - 1) 1 + J-Qq d t '  e x p ( 2 n € ' / N )  prS'(Cf) 

1 + & fQQ dE' e x p ( 2 ~ E ' l N )  & E ' )  
x(0) = 

Hence, x(0) depends on the band filling and the susceptibility grows with decreasing 
electron concentration. (Note that J differs by a factor of 2 with respect to the 
definition in 1141 for the Heisenberg model.) In a small but finite field we obtain 
logarithmic singularities as a consequence of the interfercncc bctween the two Fermi 
poinn (scattering across the Fermi surface) 16, 14, 1.51. 

3.5. High-temperature Iimir 

If the temperature is much larger than the bandwidth, i.e. T > 2, we can neglect 
the independent terms in the integral equations. In the absence of driving terms the 
energy potentials cm and p: do not depend on and .4. The integral equations 
can then be reduced to a set of algebraic equations. We have succeeded in obtaining 
a general solution of this algebraic set of equations only for S = 1/2. This solution 
for S = 1 / 2  can be found in [6]. For general S we cncountered similar dilticulties 
as previously for the degcncrate Anderson impurity (see [13]). 

3.6. Mapping on rhe SU(N)-invariant Heirenberg chain 

The proccdure outlined below is analogous to the one presented in [13] to obtain 
the CoqblinSchrieffer limit from the solution of the Anderson model. We define the 
following set of functions 

@ift1)(,4) = e x p ( - r f / T )  @('+U " t l  ( A )  = vift1) 1 = 0,  ..., 35- 1 (3.17) 

where n = 1,. . .. Since spin and charge excitations decouplc in 1D models, we can 
freeze the charge excitations and incorporate the charge variables into the driving 
term. In this way we obtain the following set of integral equations 

(3.18) 
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Here D,(A) are the driving terms, which are given by 

where m = 1,. . . ,2S. 
For low-energy spin excitations the two driving terms have the same h- 

dependence. On the other hand, for a full band the driving term involving e2s 
vanishes and equations (3.18) and (3.19) reduce to the thermodynamic Bethe anmtz 
equations for the SU(N) Heisenberg chain. In this limit the charges are localized 
and have no dynamics. 

4. Concluding remarks 

We considered the N-fold-degenerate t-J model, which is completely integrable at 
the supersymmetric point t = J = -V [lo]. The components may be thought of 
as arising from combined spin and orbital degrees of freedom. Note that the model 
can be mapped onto a (N  + I)-component quantum lattice gas as introduced by 
Sutherland [5]. The additional degree of freedom corresponds to the charges, Using 
the string hypothesis we classificd all the eigenstates of the Hamiltonian and derived 
the thermodynamic Bethe umuh equations, generalizing in this uay our results for 
the traditional (S = 1/2) 1-J model. The procedure followed is in close analogy to 
the one used to derive the thermodynamics of the degenerate Anderson model for a 
magnetic impurity (in the limit U -+ 00) [13]. 

We have analysed the thermodynamic Bethe ansae equations in several limits. For 
a full band the charges do not have dynamics and the equations reduce to those of 
the SU(N)-invariant Heisenberg chain. The properties of the model are particularly 
interesting at low T. The zero-field susceptibility is a decreasing function of the 
electron density. x is expected to diverge as N J N ,  + 0 (ID van Hove singularity). 

. In  a finite but small magnetic field the susceptibility shows logarithmic singularities, 
which are characteristic of one-dimensional systems with SU(N) symmetry and arise 
due to the interference of the two Fermi-surface points [14,15]. The specific heat at 
low T is proportional to T.  As a consequence of the logarithmic field singularitites 
the -pcoefficient is singular, in the sense that the limits T i 0 and H + 0 cannot 
be interchanged [16]. 

Although we classified the complex spin and charge rapidities (2.4) as bound 
states of electrons with different spin components, they are not bound states in the 
real sense, since no actual binding energy is involved (the binding energy is zero). 
The excitation spectrum is then similar to the one expected for a Fermi liquid or 
a marginal Fermi liquid. A ground-state crossover is believed to take-place at the 
supersymmetric point of the t-J model (at least for low density of electrons) 191. 
t = J = -V is the boundary between normal Fermi liquid behaviour and a state 
with Cooper-pair-type bound states with finite pairing energy. 
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